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a b s t r a c t 

The recently proposed dual interpolation boundary face method (DiBFM) has been shown 

to have a much higher accuracy and improved convergence rates compared with the tra- 

ditional boundary element method. In addition, the DiBFM has the ability to approximate 

both continuous and discontinuous fields, and this provides a way to approximate the dis- 

continuous pressure at a contact boundary. This paper presents a solution approach for 

two dimensional frictionless and frictional contact problems based on the DiBFM. The so- 

lution approach is divided into outer and inner iterations. In the outer iteration, the size of 

the contact zone is determined. Then the elements near the contact boundary are updated 

to approximate the discontinuous pressure. The inner iteration is used to determine the 

contact state (sticking or sliding), and is only performed for frictional contact problems. 

To make the system of equations solvable, the contact constraints and some supplemen- 

tary equations are also given. Several numerical examples demonstrate the validity and 

high accuracy of the proposed approach. Furthermore, due to the continuity of elements 

in DiBFM and the detection of the contact boundary, the pressure oscillations near the 

contact boundary can be treated. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Contact problems are of great importance in engineering applications, such as gears, bearings, connecting rod and pin

assemblies, etc. The solution to these problems based on the finite element method (FEM) and boundary element method

(BEM) has long been an attractive research topic. In this paper, a solution approach based on the dual interpolation boundary

face method (DiBFM) is presented. 

The DiBFM was recently proposed by Zhang et al. [1–3] , and the method has been applied to thin-walled structures [4] .

Like the Boundary Element Method (BEM), the method is also based on a boundary integral equation, but by using CAD

geometries directly no geometric error will be introduced [5] . Compared with the interpolation accuracy of traditional dis-

continuous elements, the accuracy of dual interpolation elements is increased by two orders. In consequence, the method

has been shown to deliver solutions of much higher accuracy, with improved convergence rates and computational effi-

ciency for most cases [1,2] . In addition, the method has an ability to naturally and accurately approximate both continuous

and discontinuous fields. It is well known that the pressure from contact to non-contact region is discontinuous, and this

motivates the present study to use the DiBFM to approximate the discontinuous pressure at contact boundary. 
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Fig. 1. Dual interpolation elements in 2D problems: (a) S1, (b) S2, and (c) S3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schemes to accommodate the pressure discontinuity can be divided into weak discontinuity models and strong discon-

tinuity models. In weak discontinuity models, the pressure is C 0 continuous at a contact boundary, while in the strong

discontinuity models, a pressure jump exists at contact boundary. A strong discontinuity can be found, for example, when

a flat punch comes into contact with an elastic plane, but these cases are readily addressed since the contact boundary

is known a priori . For this type of problem, the use of discontinuous elements is an effective method as long as the con-

tact boundary coincides with element endpoints. However, for general contact problems with an a priori unknown contact

boundary, the contact pressure usually exhibits a weak discontinuity. We remark that where there is a discontinuous contact

pressure, the integration accuracy can be difficult to ensure, potentially resulting in a loss of accuracy [6–9] . 

To address the weak discontinuity in contact pressure, two types of method are available: the mesh refining method

[10] and the element updating method [9,11,12] . The mesh refining method is simple, but it is very costly and can be-

come ineffective, especially when the contact boundary moves. The element updating method requires the calculation of

the contact boundary. In [9,13] , the contact boundary was detected from variation in the normal gap between the contact-

ing surfaces, since only the displacements form the independent variables in this penalty method. Conversely, in [12] the

contact boundary was found from variation in the contact pressure. Alternatively, a bisection method may also be used to

detect the contact boundary [14] . In the current paper, the element updating method is adopted to overcome the effect of

the weak discontinuity in contact pressure. However, unlike [9,12,13] , both the normal gap and contact pressure are used to

detect the contact boundary. The normal gap is used when penetration between the two bodies is found, while the contact

pressure is used when a tensile normal traction develops. 

The proposed solution approach is divided into outer and inner iteration loops. In the outer iteration, the size of the

contact zone is determined, and then the elements near the contact boundary are updated to approximate the discontinuous

pressure. In the inner iteration, the contact state (sticking or sliding) is determined; this is performed only for frictional

contact problems. To make the system of equations solvable, auxiliary equations are required and these are provided by

the contact constraint equations and some supplementary equations. Numerical examples, without and with friction, are

presented to demonstrate the validity and high accuracy of the proposed approach. In addition, due to the continuity of the

S1 element and the detection of the contact boundary, the pressure oscillations near the contact boundary can be avoided

in the proposed approach. 

2. A brief introduction of DiBFM 

In the DiBFM [1,2] , the elements are called dual interpolation elements. The elements are composed of a combination of

source and virtual nodes. However, the boundary integral equations are collocated only at the source nodes. That is to say,

the virtual nodes are not used as collocation points. As a result, the number of linear equations after discretisation is less

than the number of unknown quantities. In order to arrive at a square linear system, the degrees of freedom relating to all

virtual nodes need to be condensed and this can be achieved by considering additional constraint equations. 

In this section, the element in DiBFM is introduced, and the method (the second-layer interpolation) to condense the

degrees of freedom of virtual nodes will be presented. 

2.1. The element in DiBFM 

As shown in Fig. 1 , the nodes of a dual interpolation element are divided into two groups: source and virtual nodes.

Ignoring virtual nodes, it becomes a traditional discontinuous boundary element. When both the virtual nodes and the

source nodes are taken into account, it is equivalent to a standard continuous element. In this way, the dual interpolation

element is able to unify the traditional continuous and discontinuous element approaches. As shown in the figure, we

identify the elements with the notation S1, S2, S3 indicating the number of source nodes. This notation derives from the

fact that the degrees of freedom relating to the virtual nodes are condensed and in DiBFM they do not form part of the final

linear system being solved. 

The addition of the two virtual nodes in these elements means that, in comparison with the order of interpolation

function of the traditional discontinuous elements using the source nodes alone, the interpolation in the dual interpolation

elements is increased by two orders. This leads to a considerable improvement in accuracy [1] . 

2.2. The first-layer interpolation 

The first-layer interpolation is similar to the interpolation in a traditional continuous boundary element. The difference is

that shape functions relating to both source nodes and virtual nodes are used, so that in interpolating an arbitrary quantity
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Fig. 2. Approximation the continuous or discontinuous fields. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ϕ we write 

ϕ(ξ ) = 

nα∑ 

α=1 

N 

s 
α(ξ ) ϕ(Q 

s 
α) + 

nβ∑ 

β=1 

N 

v 
β (ξ ) ϕ(Q 

v 
β ) (1)

where N 

s 
α(ξ ) is the shape function of the αth source node, N 

v 
β
(ξ ) is the shape function of the βth virtual node, ϕ(Q 

s 
α) is

the nodal value of the αth source node, and ϕ(Q 

v 
β
) is the nodal value of the βth virtual node. n α and n β are the total

number of source and virtual nodes belonging to the dual interpolation element, respectively, and ξ ∈ [ −1 , 1] is the usual

local parametric coordinate. In DiBFM, the virtual nodal value ϕ(Q 

v 
β
) is not an independent variable, and its relation to the

value of ϕ at the source nodes is determined by the second-layer interpolation. 

It should be noted that the shape functions N 

s 
α(ξ ) and N 

v 
β
(ξ ) in Eq. (1) are the Lagrange polynomials one would use

in a conventional element having a number of nodes equal to (nα + nβ) . For the S1 element shown in Fig. 1 (a), then,

these would be the standard continuous quadratic shape functions N 

v 
1 
(ξ ) = −0 . 5 ξ (1 − ξ ) , N 

s 
1 
(ξ ) = (1 − ξ )(1 + ξ ) , N 

v 
2 
(ξ ) =

0 . 5 ξ (1 + ξ ) . Shape functions for the other cases are provided in [1] . 

2.3. The second-layer interpolation 

The second-layer interpolation is used to construct the relationships between source nodes and virtual nodes. These

relationships can then be used to condense the degrees of freedom of the virtual nodes. The second-layer interpolation can

be used to approximate both continuous and discontinuous fields. 

2.3.1. The moving least square approximation 

In this paper, the second-layer interpolation is constructed by the moving least square (MLS) approximation. In our

implementation, the MLS is employed only to construct the relationships between source and virtual nodes, rather than

evaluate the shape functions at each Gauss point in the boundary integration. The virtual nodal value can be approximated

by the MLS as 

ϕ(Q 

v 
β ) = 

M ∑ 

m =1 

ψ 

v s 
m 

(ηv 
β ) ϕ(Q 

s 
m 

) (2)

where M is the total number of source nodes Q 

s 
m 

located in the influence domain of the virtual node Q 

v 
β

. The term ψ 

v s 
m 

(ηv 
β
)

is the MLS shape function corresponding to source node Q 

s 
m 

, and ηv 
β

is the parametric coordinate of virtual node Q 

v 
β

. This

coordinate is used to locate a point on a curve or straight line, and its value η ∈ [0, 1]. The derivation of Eq. (2) can be found

in [15] . 

2.3.2. Approximation of continuous and discontinuous fields 

The continuous or discontinuous behaviour at an element end point can be accommodated by simply placing either one

or two virtual nodes at the point. Two virtual nodes are used when approximating a discontinuous field, while only one

virtual node is used when modelling a continuous function. By manipulating the influence domains of each virtual node,

the continuous or discontinuous fields can be naturally and accurately approximated. To illustrate this feature, a schematic

diagram is shown in Fig. 2 . 

For discontinuous fields, two virtual nodes v 0 and v 1 are placed at the discontinuous boundary, as in Fig. 2 (a). In the

figure, the influence domain of v covers only the three blue source nodes; while the influence domain of v covers only
0 1 
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Fig. 3. Definition of the common contact direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

the three red source nodes. Due to these different influence domains, when using the second-layer interpolation (2) the

nodal values at v 0 and v 1 are different, allowing discontinuous behaviour. 

For the modelling of continuous fields, only a single virtual node, v 0 , is placed at the element end point, as shown in

Fig. 2 (b). The domain of influence of this virtual node in the second-layer interpolation (2) spans both elements to which it

belongs. In this way a continuous approximation is achieved. 

In summary, by manipulating the influence domains of virtual node in the second-layer interpolation, both continuous

and discontinuous fields can be naturally and accurately approximated. 

2.4. The boundary integral equation 

We consider an elastic body occupying domain � ⊂ R 

2 , having boundary ∂�≡
. In the absence of body forces, the

boundary integral equation [16] can be written in the following form for each body 

c i j (P ) u j (P ) = 

∫ 



U i j (P, Q ) t j (Q ) d
(Q ) −
∫ 



T i j (P, Q ) u j (Q ) d
(Q ) , P, Q ∈ 
 (3)

where u j and t j ( j = 1 , 2) are the displacement and traction components, respectively, and U ij , T ij are the displacement and

traction kernels, or fundamental solutions. c ij ( P ) is the coefficient matrix of the jump term that arises from the strongly

singular nature of the integral containing the traction kernel. For 2D plane-strain problems: 

U i j (P, Q ) = 

1 

8 πG (1 − ν) 

[ 
( 3 − 4 ν) δi j ln 

1 

r 
+ r ,i r , j 

] 
(4) 

T i j (P, Q ) = − 1 

4 π(1 − ν) r 

{
∂r 

∂n 

[
(1 − 2 ν) δi j + 2 r ,i r , j 

]
− (1 − 2 ν)(r ,i n j − r , j n i ) 

}
(5) 

where r is the distance between the source node P and the field point Q, n is the outward normal at point Q , and G and ν
are the shear modulus and Poisson’s ratio, respectively. 

3. Frictional contact problems 

3.1. Local contact coordinate system 

Consider a node pair, a and b , on the boundaries of two contacting bodies A and B, as in Fig. 3 . The common normal for

nodes in the contact zone is defined as follows: 

n = n AB = 

n A E A − n B E B 
|| n A E A − n B E B || (6) 

Here E denotes the Young’s modulus of the body indicated by its subscript. The tangential direction τ is obtained simply

by rotating n through 90 °. The contact node pair is determined by the closest point projection. In this paper, the nodes

on the less rigid body are projected onto the other contacting body. The normal direction of the more rigid solid is used

to determine the closest point. The common normal is only used to define the normal direction of the displacement and

traction, and it is not used to determine the closest point. 
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3.2. Coulomb friction law 

The Coulomb friction law defines a limitation for the tangential traction in the contact zone. The limitation can be written

as 

| t τ | ≤ μ| t n | (7)

where μ is the coefficient of friction, t τ is the tangential traction and t n is the normal traction. As long as the tangential

traction is sufficiently small that Eq. (7) is satisfied, the contacting surfaces will stick to each other. Otherwise, sliding will

occur with tangential traction | t τ | = μ| t n | applying in a direction opposing the relative motion. 

3.3. Contact constraint equations 

For any collocation node in the non-contact zone, there are two unknown variables and two integral equations ( Eq. (3)

for i = 1 , 2 ). However, for any collocation node in the contact zone, there are four unknown variables, both tractions and

displacements being unknown, but only two integral equations. Contact constraints will be imposed to provide the required

number of auxiliary equations to reach a solvable, square system. The contact constraint equations for both frictional and

frictionless are presented below. 

3.3.1. Frictional contact constraint equations 

The contact constraints depend on the contact state. Since the actual contact zone is unknown a priori , we start with a

contact zone larger than the actual contact zone. Then the contact state for any node pair can be classified into three types:

non-contact, sticking and sliding. The constraints are given below for these three contact states. Besides, it should be noted

that the node-to-node contact scheme is adopted in this paper. 

In the non-contact state, both surfaces are traction free. Since the load is applied incrementally in solving the non-linear

frictional contact problem, the traction is expressed as that from the previous load step plus the incremental traction in the

current load step. The constraint equations for the contact node pairs on bodies A and B can therefore be written as: 

t A n + �t A n = 0 ; t A τ + �t A τ = 0 (8)

t B n + �t B n = 0 ; t B τ + �t B τ = 0 (9)

In the sticking state, the normal gap and the tangential relative displacement are zero, and the traction is the same on the

two bodies A and B. The constraints for the contact node pairs on bodies A and B can therefore be written as: 

�u 

A 
n = g − �u 

B 
n ; �u 

A 
τ = �u 

B 
τ (10)

t B n + �t B n = t A n + �t A n ; t B τ + �t B τ = t A τ + �t A τ (11)

In the sliding state, the normal gap is also zero, and the tangential traction is equal to the frictional coefficient multiplied by

the normal traction. Again, the traction is the same on the two bodies A and B. The constraints for the contact node pairs

on bodies A and B can therefore be written as: 

�u 

A 
n = g − �u 

B 
n ; t A τ + �t A τ = ±μ

(
t B n + �t B n 

)
(12)

t B n + �t B n = t A n + �t A n ; t B τ + �t B τ = t A τ + �t A τ (13)

In Eqs. (8) –(13) , �u j and �t j are the incremental changes in displacements and tractions, due to the current incremental

load step; u j and t j are the total displacements and tractions before the current load step. The superscript A and B denotes

the corresponding contacting body. g denotes the normal gap at the current load step, and should be updated after each

load step. The definitions of n and τ can be seen in Section 3.1 . 

3.3.2. Frictionless contact constraint equations 

In frictionless contact, only non-contact and sliding states can exist. For the non-contact state, the non-contact constraint

equations (8) and (9) still hold. For the sliding state, the constraint equation (13) also holds, but the constraint equation

(12) needs to be rewritten as 

�u 

A 
n = g − �u 

B 
n ; t A τ + �t A τ = 0 . (14)

3.4. Supplementary equations for a virtual node in the contact zone 

Unlike solving a potential problem or more straightforward elasticity problems, the consideration of contact means that

not all degrees of freedom of virtual nodes are condensed by the second-layer interpolation. In a contact problem, whether

the node is a source node or a virtual node, the contact constraints are required to be satisfied. To impose the constraints,

the degrees of freedom relating to the virtual nodes in the potential contact zone are not condensed, but will be additional

system unknowns. As presented in Section 2 , the virtual nodes are not used as collocation nodes. Thus, the two integral

equations of the form (3) have not been established, and two auxiliary equations are required. To provide these equations,

the second-layer interpolation (2) is employed. 
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3.4.1. Cross-constraint scheme to construct supplementary equations 

In the potential contact zone, the displacement and the traction are both unknown quantities. Then a question is which

one requires the second-layer interpolation to construct the supplementary equations. In this paper, a cross-constraint

scheme is used to construct these equations. 

The cross-constraint scheme can be described as follows: if the virtual nodal normal or tangential traction is a contact

constraint, then the second-layer interpolation of the normal or tangential displacement will be used as a supplementary

equation. In contrast, if the virtual nodal normal or tangential displacement is a contact constraint, then the second-layer

interpolation of the normal or tangential traction will be used as a supplementary equation. 

For frictionless and frictional contact problems, there are a total of three different contact states (non-contact, sticking

and sliding). Thus, the supplementary equations are also different. The following summarizes the supplementary equations

for different contact states. 

3.4.2. Supplementary equations for different contact states 

In the non-contact state, both the normal and tangential traction contact constraints for body A are imposed; see Eq. (8) .

Thus, the second-layer interpolation of the normal and tangential displacement is used as the supplementary equations as

below: 

�u d (Q 

v 
β ) A = d i 

{ 

M ∑ 

m =1 

ψ 

v s 
m 

(ηv 
β )�u i (Q 

s 
m 

) A 

} 

; d = (n, τ ) , i = (x, y ) . (15)

In the sticking state, both the normal and tangential displacement contact constraints for body A are imposed; see Eq. (10) .

Thus, the second-layer interpolation of the normal and tangential traction is used as the supplementary equations as below:

(t d + �t d )(Q 

v 
β ) A = d i 

{ 

M ∑ 

m =1 

ψ 

v s 
m 

(ηv 
β )(t i + �t i )(Q 

s 
m 

) A 

} 

; d = (n, τ ) , i = (x, y ) . (16)

In the sliding state, for body A, the normal displacement and tangential traction constraints are imposed; see Eqs. (12) and

(14) . Thus, the second-layer interpolation of normal traction and tangential displacement constraints are used as the sup-

plementary equations. The two supplementary equations for virtual node on body A are: 

( t n + �t n ) (Q 

v 
β ) A = n i 

{ 

M ∑ 

m =1 

ψ 

v s 
m 

(ηv 
β ) ( t i + �t i ) (Q 

s 
m 

) A 

} 

; i = (x, y ) ; (17a) 

�u τ (Q 

v 
β ) A = τi 

{ 

M ∑ 

m =1 

ψ 

v s 
m 

(ηv 
β )�u i (Q 

s 
m 

) A 

} 

; i = (x, y ) . (17b) 

For nodes on body B, both the normal and tangential traction contact constraints are always imposed; see Eqs. (9) ,

(11) and (13) . Thus, the equations for the second-layer interpolation of the normal and tangential displacement are used as

the supplementary equations. The two supplementary equations for virtual node on body B are: 

�u d (Q 

v 
β ) B = d i 

{ 

M ∑ 

m =1 

ψ 

v s 
m 

(ηv 
β )�u i (Q 

s 
m 

) B 

} 

; d = (n, τ ) , i = (x, y ) . (18)

In the above, d i is the direction cosine and the Einstein summation convention is used. Further, �ϕ d (Q 

v 
β
) = d x �ϕ x (Q 

v 
β
) +

d y �ϕ y (Q 

v 
β
) , ϕ = (u, t) , d = (n, τ ) . The definitions of the variables are the same as those defined in Sections 2.3.1 and 3.3 . 

4. Updating the elements near the contact boundary 

4.1. Contact boundary detection method 

At any stage in the analysis, the size of the contact zone is changed according to the results of the analysis, progressively

refining towards the true contact zone. The current estimate of the contact zone may be larger or smaller than the real

contact zone, and the contact boundary detection method used to identify the size of the contact zone for the next iteration

is different depending on whether the size is currently overestimated or underestimated. In this section we present the

method of detecting the contact boundary in both cases. 

If the potential contact zone is larger than the real contact zone, after computation a tensile normal traction will develop,

which violates a physical constraint. In this case, all elements are interrogated to identify the element in which the contact

pressure (normal traction) is partially negative and partially positive. This element is named the contact boundary element.

The updated location of the contact boundary is found by linear interpolation between the two nodes on the contact bound-

ary element having normal tractions closest to t n = 0 , one node having a positive normal traction, the other being negative.

The scheme is illustrated in Fig. 4 . 
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Fig. 4. Boundary detection method in contact boundary element. 

Fig. 5. Updating the elements near the contact boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 4 , the interpolation considers nodes j and k being the two nodes having a normal traction closest to t n = 0 . Let us

consider, without loss of generality, the case t n ( j ) > 0 and t n ( k ) < 0, in which case the location of the contact boundary can

be estimated as 

x̄ = x ( j) + 

t n ( j) 

t n ( j) − t n (k ) 
[ x ( k ) − x ( j) ] . (19)

In the above equation, x can be the Cartesian coordinate or the parametric coordinate as required. 

A very similar method can be used to locate the contact boundary when the potential contact zone is smaller than the

real contact zone. In this case, at the current step in the analysis penetration is predicted to occur, also violating a physical

constraint. Here, we find the element where the normal gap is partially negative and partially positive and, using the normal

gap to replace the pressure, the linear interpolation (19) can be performed again to determine the contact boundary. 

The contact boundary detection repeats until no tensile normal tractions occur, and no penetration occurs, at any nodes.

4.2. Updating the elements near the contact boundary 

In our implementation, the elements near the contact boundary are updated to approximate the traction, which is al-

lowed to become discontinuous. A fine mesh can be obtained at the contact boundary, which is more conducive to the

accurate approximation of discontinuous traction. This method differs from that used in [9,11,12] , in which the authors

moved the adjacent node to the contact boundary. To illustrate our method, a schematic diagram is shown in Fig. 5 . 

In this figure, the adjacent elements at the contact boundary are the elements labelled α and β . The two elements are

divided into four sub-elements α1 , α2 , β1 and β2 , and two virtual nodes are placed at the contact boundary to model the

discontinuous traction. Using this approach, each update of the mesh near the contact boundary causes the total number of

elements to increase by two. 

It should be noted that the final contact boundary is determined when no normal tension and no penetration occur, and

this usually requires multiple iterations. If the number of elements increases with each iteration, a very dense mesh may be

obtained, which is unnecessarily detrimental to computational efficiency. 

To avoid the above problem, in our implementation, there are two types of mesh: the original mesh and the updated

mesh. In each iteration, having located the new estimate of the contact boundary, we go back to the original mesh to

generate the updated mesh, as shown in Fig. 5 . Using this algorithm, the size of the model does not increase with each

iteration and the calculation proceeds efficiently. 
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Fig. 6. The solution approach for contact problems based on the DiBFM. 

Fig. 7. Frictionless Hertzian contact. 

 

 

 

 

 

 

 

 

 

 

 

4.3. The solution approach for contact problems 

The solution approach based on the DiBFM is summarized in Fig. 6 . Loop 1 is the outer iteration, which is used to

determine the size of the contact zone. Loop 2 is the inner iteration, which is employed to determine the contact state. The

inner iteration is performed only for frictional contact problems. For frictional contact problems, also, the load is applied in

increments to arrive at the correct contact area. We adopt the conditions for convergence from [17–21] . 

5. Numerical examples 

In this section, three examples are presented. S1 elements will be used in all examples in which the DiBFM is used.

The first example, Hertzian contact, has an analytical solution, and this is used to demonstrate that the S1 element in the

proposed approach can achieve the accuracy obtained by the traditional discontinuous quadratic element. Besides, due to the

continuity of the S1 element and the detection of the contact boundary, the pressure oscillations near the contact boundary

can be treated. The other two examples (with two and three contact zones) demonstrate further the above advantages of

the proposed approach on problems having different characters. 

5.1. Hertzian contact problem 

In the first example we consider an elastic cylinder coming into contact with a rigid plate. The geometry, material prop-

erties, loads and boundary conditions are shown in Fig. 7 (a). A very small load, p = 0 . 4 , has been chosen to give small

displacements in order to match closely the assumption of small deformation in the analytical solution [22] , according to

which the contact half-width, b , is 

b = 2 

√ 

2 R 

2 p(1 − ν2 ) 

Eπ
, (20) 
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Fig. 8. Contact pressure solutions, from different meshes, in the potential contact zone. 

Table 1 

Contact half-width for different mesh. 

Mesh size b ∗ Error = 

∣∣ b ∗−b 
b 

∣∣
h1 0.56511 3.76% 

h2 0.55357 1.64% 

h3 0.54991 0.94% 

Fig. 9. Contact pressure: comparison against traditional constant elements. 

 

and the distribution of the normal contact pressure, p n , is 

p n = 

4 Rp 

πb 2 

√ (
b 2 − x 2 

)
. (21)

For the given set of parameters, the contact half-width b = 0 . 54462 . 
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Fig. 10. Contact pressure: comparison against traditional discontinuous quadratic elements. 

Fig. 11. Contact pressure: comparison against refined traditional discontinuous quadratic elements. 

 

 

 

 

 

 

 

 

5.1.1. Comparison with the analytical solution 

The contact pressure and the contact half-width are respectively shown in Fig. 8 and in Table 1 , and three sets of re-

sults (h1, h2 and h3) are presented. The three sets of results correspond to different meshes used in the potential contact

zone ( −1 . 276 < x < 1 . 276 ), but the mesh in all non-contact regions remains unchanged throughout. The initial number of

elements in the potential contact zone is 16 (mesh h1), 24 (mesh h2) and 32 (mesh h3).The mesh in the non-contact zone

can be seen in Fig. 7 (b). 

From Fig. 8 , it can be seen that with increasing mesh density in the potential contact zone, the contact pressure becomes

almost coincident with the analytical solution; this provides a graphical demonstration of the convergence of the proposed

approach. Similarly, Table 1 shows the convergence in terms of the error in the contact half-width (here b ∗ denotes the

numerical approximation to the contact half-width, and b is the analytical solution). These results demonstrate the validity

of the proposed approach, including its ability to predict the correct extent of the contact region. 
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Fig. 12. A flat rounded punch on a foundation. 

Fig. 13. Contact pressure for frictionless and frictional contact, 0 < x < 44 . 5 . 

 

 

 

 

 

 

 

 

 

 

5.1.2. Comparison with traditional discontinuous elements 

Figs. 9 and 10 show comparisons with traditional discontinuous boundary elements for this Hertzian contact problem. In

the figures, the initial number of elements in the potential contact zone is equal for both methods (mesh h3). In the tra-

ditional method, no contact boundary detection has been performed. We compare against both traditional constant ( Fig. 9 )

and discontinuous quadratic element ( Fig. 10 ) since (i) the constant elements have the same number of source nodes as the

S1 element in our DiBFM analysis, and (ii) the quadratic elements will have the same underlying order of variation of the

displacements and tractions over the element. 

From Fig. 9 , it can be seen that the accuracy of our proposed approach (Our) is considerably higher than the traditional

constant element (Trad). Fig. 10 shows that the result of our proposed approach (Our) is almost consistent with that of the

traditional discontinuous quadratic element (Trad). However, obvious pressure oscillations near the contact boundary can be

seen in this element (Trad). This is due to the fact that (i) the discontinuous element is used and (ii) the contact boundary is

usually in an element, not at the endpoint of the element, which reduces the regularity of the solution [9] . In contrast, the
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Fig. 14. Contact pressure for frictionless and frictional contact, 44 . 5 < x < 45 . 

Fig. 15. Contact pressure for frictionless and frictional contact, 45 < x < 45 . 10 . 

 

 

 

 

 

 

 

 

 

 

 

S1 element in DiBFM is a continuous element. Furthermore, due to the contact boundary detection, the contact boundary

is at the endpoint of the element. Thus, our proposed approach (Our) provides a higher fidelity solution near the contact

boundary than the traditional discontinuous quadratic element (Trad). Even if the mesh size of the potential contact zone is

halved for traditional discontinuous quadratic element (Trad), this conclusion still holds, see Fig. 11 . 

This study shows that the S1 element in DiBFM can achieve the accuracy obtained by the traditional discontinuous

quadratic element, which proves the high accuracy of the proposed approach. In addition, due to the continuity of the S1

element and the detection of the contact boundary, the pressure oscillations near the contact boundary can be treated in

our method. 

5.2. A flat rounded punch 

In this example, an elastic flat rounded punch comes into contact with an elastic foundation. The geometry, loads and

boundary conditions are shown in Fig. 12 (a). The material properties of the punch and the foundation are equal, both having

Young’s modulus E = 200 GPa and Poisson’s ratio ν = 0.3. The example has been solved in [23] , and a sharp increase in

pressure is seen to occur at the intersection of the line and the arc. To capture this large pressure gradient, a fine mesh

is used near the intersection. We use 20 elements in (0 < x < 44.5), 10 elements in (44.5 < x < 45.0) and 25 elements in
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Fig. 16. Contact pressure and shear stress for frictional contact ( μ = 0 . 1 ). 

Fig. 17. Multi-contact zone problem. 

 

 

 

 

 

 

 

(45 < x < 45.27), and the mesh in the non-contact zone can be seen in Fig. 12 (b). The results of the traditional discontinuous

quadratic element are used for comparison, and the S1 element in DiBFM is again adopted in the proposed approach. Both

frictionless and frictional ( μ = 0 . 1 ) contact problems are considered. 

The contact pressure distributions for frictionless and frictional ( μ = 0 . 1 ) are shown in Figs. 13 –15 . The pressure curves

in the three figures correspond to the pressure in different areas. The ‘Trad’ and ‘Trad-friction’ labels denote the pressure

found using traditional discontinuous quadratic elements for frictionless and frictional contact, respectively. The ‘Our’ and

‘Our-friction’ labels denote the pressure found using our proposed approach for frictionless and frictional contact, respec-

tively. From the three figures, it can be seen that the result of the proposed approach using S1 elements is almost consistent
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Fig. 18. Contact pressure and shear stress for left contact zone. 

Fig. 19. Contact pressure and shear stress for middle contact zone. 

 

 

 

 

 

 

 

with that of traditional discontinuous quadratic element. In addition, the pressure oscillations only occur in traditional dis-

continuous quadratic element, rather than in S1 element, as shown in Fig. 15 . 

In Fig. 16 , the pressure and shear stress distributions for μ = 0 . 1 are shown. The ‘Trad-press’ and ‘Trad-shear’ labels

denote the pressure and shear stress for traditional discontinuous quadratic elements, respectively. The ‘Our-press’ and ‘Our-

shear’ labels denote the pressure and shear stress in our proposed approach. The shear stress in the figure has been divided

by the frictional coefficient μ. This figure again shows a good similarity between the results of the proposed approach and

those of traditional discontinuous quadratic elements. 

This study further demonstrates the ability of the S1 element to achieve an accuracy comparable to that obtained by the

traditional discontinuous quadratic element. Meanwhile, it also demonstrates that the pressure oscillations near the contact

boundary can be treated in our method. 
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Fig. 20. Contact pressure and shear stress for right contact zone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3. Multi-contact zone problem 

A multi-contact zone frictional contact problem is shown in Fig. 17 . Contact takes place over three separate contact

zones between the punch and the foundation. For convenience, the three contact zones are called the left, middle and right

contact zone. The curved edge of the upper region (the punch) is modelled using five arcs of radius r = 5 . The material

parameters of the punch and the foundation are equal, both having Young’s modulus E = 20 0 0 and Poisson’s ratio ν = 0 . 3 .

The frictional coefficient μ = 0 . 2 . The results using traditional discontinuous quadratic elements are used for comparison,

and the S1 element in DiBFM is adopted. The initial number of elements in both methods is equal. To obtain a good contact

pressure, a fine mesh is used in the contact zones ( −2 . 19 < x < 3 . 81 ), ( −14 . 19 < x < 15 . 81 ) and ( −26 . 19 < x < 27 . 81 ). Each

contact zone has 40 elements. The mesh in the non-contact zone can be seen in Fig. 17 (b). 

The pressure and shear stress distributions over the three contact zones for μ = 0 . 2 are shown in Figs. 18 –20 . The ‘Trad-

press’ and ‘Trad-shear’ labels denote the pressure and shear stress for traditional discontinuous quadratic elements, re-

spectively. The ‘Our-press’ and ‘Our-shear’ labels denote the pressure and shear stress for the S1 element in our solution

approach. The shear stress in the figures has been divided by the frictional coefficient μ. It can be seen that the result of

the S1 element in the proposed approach is almost coincident with that of the traditional discontinuous quadratic element.

Besides, no pressure oscillations occur near the contact boundary in our method. These confirm the conclusions drawn from

the first two examples. 

6. Conclusions 

A solution approach based on the dual interpolation boundary face method (DiBFM) has been proposed for 2D friction-

less and frictional contact problems. The solution approach is divided into the outer and inner iteration loops. The size of

the contact zone is determined in the outer iteration, while in the inner iteration the contact state (sticking or sliding) is de-

termined; the inner loop is only performed for frictional contact problems. To approximate the discontinuous pressure that

arises in some classes of contact problem, a contact boundary detection method has been given, and its validity has been

demonstrated by numerical examples. All presented numerical examples, without and with friction, have demonstrated that

the S1 element in the proposed approach can achieve the accuracy obtained by traditional discontinuous quadratic bound-

ary elements. In addition, since the S1 element is a continuous element and the contact boundary is detected, the pressure

oscillations near the contact boundary can be treated in the proposed approach. 
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